Abstract

This article addresses the co-evolution of morphology and control in evolutionary robotics, focusing on the challenge of premature convergence and limited morphological diversity. We conduct a comparative analysis of state-of-the-art algorithms, focusing on QD (Quality-Diversity) algorithms, based on a well-defined methodology for benchmarking evolutionary algorithms. We introduce carefully chosen indicators to evaluate their performance in three core aspects: task performance, phenotype diversity, and genotype diversity. Our findings highlight MNSLC (Multi-BC NSLC), with the introduction of aligned novelty to NSLC (Novelty Search with Local Competition), as the most effective algorithm for diversity preservation (genotype and phenotype diversity), while maintaining a competitive level of exploitability (task performance). MAP-Elites, although exhibiting a well-balanced trade-off between exploitation and exploration, fall short in protecting morphological diversity. NSLC, while showing similar performance to MNSLC in terms of exploration, is the least performant in terms of exploitation, contrasting with QN (Fitness-Novelty MOEA), which exhibits much superior exploitation, but inferior exploration, highlighting the effects of local competition in skewing the balance toward exploration. Our study provides valuable insights into the advantages, disadvantages, and trade-offs of different algorithms in co-evolving morphology and control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call