Abstract

Fengyun-3C (FY-3C) is a Global Navigation Satellite Systems (GNSS) Radio Occultation (RO) mission founded which was by China on 23 September 2013. In this study, under a specific temporal and spatial domain, we systematically compare FY-3C refractivity profiles with Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) refractivity profiles for the year 2015. The COSMIC profiles used in this study contain reflections, as identified in the Radio Occultation Meteorology Satellite Application Facility (ROM SAF) flag database. From 0 to 25 km altitude, the mean biases and relative standard deviations of the comparisons between FY-3C and COSMIC are less than 1% and 2% when COSMIC profiles present reflected signals. Radio holographic analysis is used to visualize and identify the spectra of FY-3C-reflected signals in the time-frequency domain. It is confirmed that the reflected signals in the lower troposphere and near the surface can be tracked by an FY-3C receiver. Further, most of the FY-3C events that matched with COSMIC reflected events show reflection patterns at a lower height, especially above the ocean’s surface. Under Bouguer’s rule and spherical symmetry assumptions, we reconstructed the reflected bending angle models by Abel transformation, which are valuable for reducing N-bias in the ducting layer. Three examples of FY-3C events show that the reflected bending branch is near the surface. Overall, the reflected signal of FY-3C could be used as a supplementary data portion for FY-3C atmospheric products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.