Abstract

Myocardial elastography (ME), a radio-frequency (RF) based speckle tracking technique, was employed in order to image the entire two-dimensional (2D) transmural deformation field in full echocardiographic views and was validated against tagged magnetic resonance imaging (tMRI) in normal as well as reperfused ( i.e., treated myocardial infarction [MI]) human left ventricles. RF ultrasound and tMRI frames were acquired at the papillary muscle level in 2D short-axis (SA) views at the frame rates of 136 (fps; real-time) and 33 fps (electrocardiogram [ECG]-gated), respectively. In ME, in-plane, 2D (lateral and axial) incremental displacements were iteratively estimated using one-dimensional (1D) cross-correlation and recorrelation techniques in a 2D search with a 1D matching kernel. In tMRI, cardiac motion was estimated by a template-matching algorithm on a 2D grid-shaped mesh. In both ME and tMRI, cumulative 2D displacements were obtained and then used to estimate 2D Lagrangian finite systolic strains, from which polar ( i.e., radial and circumferential) strains, namely angle-independent measures, were further obtained through coordinate transformation. Principal strains, which are angle-independent and less centroid-dependent than polar strains, were also computed and imaged based on the 2D finite strains using methodology previously established. Both qualitatively and quantitatively, angle-independent ME is shown to be capable of (1) estimating myocardial deformation in good agreement with tMRI estimates in a clinical setting and of (2) differentiating abnormal from normal myocardium in a full left-ventricular view. The principal strains were concluded to be a potential diagnostic measure for detection of cardiac disease with reduced centroid dependence. (E-mail: ek2191@columbia.edu)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.