Abstract
Thermal stability signatures of complex molecule interaction in biological fluids can be measured using a new approach called differential scanning calorimetry (DSC). The thermal stability of plasma proteome has been described previously as a method of producing a disease-specific "signature," termed thermogram, in several neoplastic and autoimmune diseases. We describe the preliminary use of DSC performed on cerebrospinal fluid (CSF) as a diagnostic tool for the identification of patients with glioblastoma multiforme (GBM). Samples of CSF from nine patients with confirmed GBM were evaluated using DSC, and the thermogram signatures evaluated. These thermograms were compared with thermograms of CSF taken from patients with non-neoplastic conditions such as head trauma, hydrocephalus, or CSF leak. Further analysis was also performed on CSF from patients who had non-GBM neoplastic conditions such as carcinomatosis meningitis or central nervous system lymphoma or leukemia. The DSC thermograms of CSF of the patients with GBM were significantly different when compared with other neoplastic and non-neoplastic cases. The melting temperature of the major transition was shifted by 5°C, which makes it easily distinguishable from control cases. Our results are very preliminary, but it appears that the DSC of CSF has potential utility in diagnostics and monitoring disease progression in GBM patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.