Abstract

Can a modified specific gravity technique be used to distinguish viable from nonviable embryos? Preliminary data suggests a modified specific gravity technique can be used to determine embryo viability and potential for future development. Single embryo transfer (SET) is fast becoming the standard of practice. However, there is currently no reliable method to ensure development of the embryo transferred. A preliminary, animal-based in vitro study of specific gravity as a predictor of embryo development using a mouse model. After a brief study to demonstrate embryo recovery, experiments were conducted to assess the ability of the specific gravity system (SGS) to distinguish between viable and nonviable embryos. In the first study, 1-cell mouse embryos were exposed to the SGS with or without previous exposure to an extreme heat source (60°C); measurements were repeated daily for 5 days. In the second experiment, larger pools of 1-cell embryos were either placed directly in culture or passed through the SGS and then placed in culture and monitored for 4 days. In the first experiment, viable embryos demonstrated a predictable pattern of descent time over the first 48 h of development (similar to previous experience with the SGS), while embryos that were heat killed demonstrated significantly altered drop patterns (P < 0.001); first descending faster. In the second experiment, average descent times were different for embryos that stalled early versus those that developed to blastocyst (P < 0.001). Interestingly, more embryos dropped through the SGS developed to blastocyst than the culture control (P < 0.01). As this is a preliminary report of the SGS technology determining viability, a larger embryo population will be needed. Further, the current in vitro study will need to be followed by fecundity studies prior to application to a human population. If proven, the SGS would provide a noninvasive means of assessing embryos prior to transfer after assisted reproductive technologies procedures, thereby improving fecundity and allowing more reliable SET. The authors gratefully acknowledge the funding support of the U.S. Jersey Association, the Laura W. Bush Institute for Women's Health and a Howard Hughes Medical Institute grant through the Undergraduate Science Education Program to Texas Tech University. None of the authors have any conflict of interest regarding this work. none.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.