Abstract

To explore the mechanism of action of Polygonum cuspidatum in intervening in coronavirus disease 2019 using a network pharmacology approach and to preliminarily elucidate its mechanism. The active ingredients and action targets of P cuspidatum were classified and summarized using computer virtual technology and molecular informatics methods. The active ingredients and relevant target information of P cuspidatum were identified using the TCM Systematic Pharmacology Database and Analysis Platform, the TCM Integrated Pharmacology Research Platform v2.0, and the SwissTarget database. The GENECARDS database was used to search for COVID-19 targets. The STRING database was analyzed and combined with Cytoscape 3.7.1 software to construct a protein interaction network map to screen the core targets. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was then performed. The core compound, polydatin, was selected and the core targets were analyzed by computer virtual docking using software such as discovery studio autodock tool. In vitro cell models were constructed to experimentally validate the activity of the core compound, polydatin. By computer screening, we identified 9 active ingredients and their corresponding 286 targets from P cuspidatum. A search of the GENECARDS database for COVID-19 yielded 303 core targets. By mapping the active ingredient targets to the disease targets, 27 overlapping targets could be extracted as potential targets for the treatment of COVID-19 with P cuspidatum. In addition, the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathway on core targets showed that the coronavirus disease, MAPK signaling pathway, NF kappa B signaling pathway, and other signaling pathways were highly enriched. Combined with the degree-high target analysis in the protein interaction network, it was found to be mainly concentrated in the NF-kappaB (NF-κB) signaling pathway, indicating that the NF-κB signaling pathway may be an important pathway for P cuspidatum intervention. In vitro assays showed no effect of 0.1 to 10 μM polydatin on cell viability, but an inhibitory effect on the transcriptional activity of NF-κB-RE. Molecular docking showed stable covalent bonding of polydatin molecules with Il-1β protein at residue leu-26, TNF protein ser-60, residue gly-121, and residue ile-258 of ICAM-1 protein, indicating a stable docking result. The treatment of COVID-19 with P cuspidatum is characterized by multi-component, multi-target, and multi-pathway, which can exert a complex network of regulatory effects through the interaction between different targets, providing a new idea and basis for further exploration of the mechanism of action of P cuspidatum in the treatment of COVID-19.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call