Abstract

Fuel breeding is one of the essential performances for a self-sustaining reactor system which can maintains the fuel sustainability while the reactor produces energy and consumes the fissile materials during operation. Thorium cycle shows some advantageous on higher breeding characteristics in thermal neutron spectrum region as shown in the Shippingport reactor and molten salt breeder reactor (MSBR) project. In the present study, the feasibility of large and small water cooled thorium breeder reactors is investigated under equilibrium conditions where the reactors are fueled by 233U–Th oxide and they adopts light water coolant as moderator. The key properties such as required enrichment, breeding capability, and initial fissile inventory are evaluated. The conversion ratio and fissile inventory ratio (FIR) are used for evaluating breeding performance. The results show the feasibility of breeding for small and large reactors. The breeding performance increases with increasing power output and lower power density. The small reactor may achieve the breeding condition when the fuel pellets' power density of about 22.5 W/cm 3 and burnup of about 20 GWd/t.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.