Abstract

Disinfectants are regularly used for cleansing poultry slaughterhouses to control microorganisms. However, the microorganisms such as bacteria are developing resistance to disinfectant(s) and complicate control of bacterial infections. The aim of this study was, therefore, to determine disinfectant susceptibility/resistance patterns manifested by bacteria (to commonly used disinfectants), which were isolated from intestines of slaughtered indigenous chickens in Nairobi, Kenya. The method used was agar well diffusion, and the six disinfectants (their active ingredients are in brackets) tested were as follows: Kupacide® (glutaraldehyde; benzalkonium chloride); TH4+® (didecyl dimethyl ammonium HCl; dioctyl dimethyl ammonium HCl; octyl decyldimethyl ammonium HCl; alkyl dimethyl ammonium HCl; and glutaraldehyde); Noro cleanse® (glutaraldehyde; coco-benzyl-dimethyl-ammonium chloride); Dettol® (chloroxylenol); Savlon® (chlorhexidine gluconate; cetrimide; and N-propylalcohol); and Jik® (sodium hypochlorite). At recommended user concentration by the manufacturer, isolates showed various resistance to the respective disinfectants. E. coli isolates were resistant to five of the tested disinfectants (Jik®, TH4+®, Noro cleanse®, Dettol®, and Kupacide®); however, they were susceptible to Savlon®; Staphylococcus isolates were resistant to disinfectants to Jik® and TH4+® and susceptible to the rest disinfectants; Streptococcus isolates were only resistant to Jik® and susceptible to the remaining disinfectants. Some E. coli and Staphylococcus isolates showed resistance to more than one disinfectant. This study has demonstrated resistance of the bacterial isolates to various disinfectants at recommended user concentrations, although some of them were susceptible at higher concentration(s) and lower concentrations. This will interfere with the cleansing of the respective premises, resulting in contaminated products, which may end-up causing disease in the humans consuming them. Hence, it is recommended that one ascertains the efficacy of respective disinfectant by carrying out disinfectant susceptibility testing to know the effective ones and the appropriate concentration to use.

Highlights

  • Disinfectants are chemical agents which are used for decontamination of surfaces and other inanimate objects applied in different fields, including in poultry production [1]

  • For each of the three isolated bacterial genera, Staphylococcus, Streptococcus, and Escherichia, five isolates from each slaughterhouse were tested for their disinfectant susceptibility/resistance patterns, with respect to six disinfectants which are commonly used in poultry intensive production units/farms, hospitals, laboratories, and for hand washing using agar well diffusion technique [2]

  • Staphylococcus isolates were all susceptible at concentration x1/2, and recommended concentration, x2 and x4; they

Read more

Summary

Introduction

Disinfectants are chemical agents which are used for decontamination of surfaces and other inanimate objects applied in different fields, including in poultry production [1]. They are used to kill pathogenic microorganisms or reduce them to acceptable levels; some can destroy their spores [1]. The use of disinfectants for sanitation in food industries is very important because it ensures that there are no viable cells which can grow and multiply and contaminate the food materials [4, 6] This practice must be done prudently because the chemicals used as disinfectants can cause harm to humans

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.