Abstract

To identify the differentially expressed proteins in different liver tissues in the mouse model of alveolar echinococcosis using high-resolution mass spectrometry with data independent acquisition (DIA), and to identify the key proteins contributing to the pathogenesis of alveolar echinococcosis. Protoscoleces were isolated from Microtus fuscus with alveolar echinococcosis and the experimental model of alveolar echinococcosis was established in female Kunming mice aged 6 to 8 weeks by infection with Echinococcus multilocularis protoscoleces. Mice were divided into the experimental and control groups, and animals in the experimental group was injected with approximately 3 000 protoscoleces, while mice in the control group were injected with the same volume of physiological saline. Mouse liver specimens were sampled from both groups one year post-infection and subjected to pathological examinations. In addition, the lesions (the lesion group) and peri-lesion specimens (the peri-lesion group) were sampled from the liver of mice in the experimental group and the normal liver specimens (the normal group) were sampled from mice in the control group for DIA proteomics analysis, and the differentially expressed proteins were subjected to bioinformatics analysis. A total of 1 020 differentially expressed proteins were identified between the lesion group and the normal group, including 671 up-regulated proteins and 349 down-regulated proteins, and 495 differentially expressed proteins were identified between the peri-lesion group and the normal group, including 327 up-regulated proteins and 168 down-regulated proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these differentially expressed proteins were involved in peroxisome, peroxisome proliferator-activated receptor (PPAR) and fatty acid degradation pathways, and the peroxisome and PPAR signaling pathways were found to correlate with liver injury. Several differentially expressed proteins that may contribute to the pathogenesis of alveolar echinococcosis were identified in these two pathways, including fatty acid binding protein 1 (Fabp1), Acyl-CoA synthetase long chain family member 1 (Acsl1), Acyl-CoA oxidase 1 (Acox1), Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (Ehhadh) and Acetyl-Coenzyme A acyltransferase 1B (Acaa1b), which were down-regulated in mice in the experimental group. A large number of differentially expressed proteins are identified in the liver of the mouse model of alveolar echinococcosis, and Fabp1, Acsl1, Acox1, Ehhadh and Acaa1b may contribute to the pathogenesis of alveolar echinococcosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.