Abstract

The concept of drug repurposing is now widely utilized by biomedical scientists for drug discovery. An example of this is the use of selegiline (SEL), a monoamine oxidase inhibitor that was initially used for the management of depression but is now being considered for another purpose. This study compares the cytotoxic effects of SEL on different cancer cells. Further, the study explores the molecular mechanism of cell death, validating the possibility of its repurposing for cancer. Preliminary analysis of network pharmacological data was conducted in silico, followed by in vitro cytotoxicity tests on PC12, G361, MDA-MB231, MCF7, THP-1, and Hela cells under normoxic and hypoxic conditions, using the MTT assay. The mechanism of cell death was then confirmed by performing DAPI and FITC-conjugated Annexin V and Propidium Iodide (PI) staining assays. Additionally, ROS levels and PKC phosphorylation were also evaluated. In silico analysis has revealed that SEL is associated with ten genes linked to different cancer types. Specifically, SEL was most cytotoxic to neuronal pheochromocytoma, triple-negative human epithelial breast cancer cells, and ER+ and PR+ breast cancer cells. Furthermore, it was observed that this cell death occurred through ROS-independent apoptosis pathways. In addition, SEL was found to inhibit the phosphorylation of PKC, which may contribute to cell death. SEL induces apoptosis in breast cancer cells independently of reactive oxygen species and inhibits the phosphorylation of protein kinase C, which merits further exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.