Abstract

A tetrahedral hohlraum with four half-cylindrical cavities (FHCH) is proposed to balance tradeoffs among the drive symmetry, coupling efficiency, and plasma filling of the hohlraum performance for indirectly driven inertial confinement fusion. The peak drive symmetry in the FHCH with a cavity-to-capsule ratio (CCR) of 2.2 is comparable to those in the spherical hohlraum of CCR = 4.5 with six laser entrance holes (6LEHs-Sph.) ((Lan et al 2014 Phys. Plasmas 21 010704) and three-axis cylindrical hohlraum (6LEHs-Cyls.) of CCR = 2.0 (Kuang et al 2016 Sci. Rep. 6 34636), and the filling time of plasma is close to the ones in the 6LEHs-Cyls. and the ignition target Rev5-CH of the national ignition campaign, and about half of that in the 6LEHs-Sph. In particular, the coupling efficiency is about 19% and 16% higher than those of the 6LEHs-Sph. and 6LEHs-Cyls., respectively. Besides, preliminary study indicates that the FHCH has a robust symmetry to uncertainties of power imbalance and pointing errors of laser beams. Furthermore, utilizing the FHCH, the feasibility of a tetrahedral indirect drive approach on the national ignition facility and hybrid indirect–direct drive approach with the laser arrangement designed specially for 6LEHs-Sph. or 6LEHs-Cyls., is also envisioned. Therefore, the proposed hohlraum configuration merits consideration as an alternative route to indirect-drive ignition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call