Abstract

BackgroundThis study aimed to confirm the cytotoxicity of zymosan in vitro and in vivo and determine the appropriate treatment time and the dose of zymosan.MethodsAHH-1 cells and HIECs were administered by 0, 20, 40, 80 or 160 μg/mL zymosan. The CCK-8 assay and flow cytometry were used to evaluate the cell viability and apoptosis 24 h, 48 h, and 72 h after administration. Furthermore, 12 h before irradiation, the cells were treated with 0, 5, 10, or 20 μg/mL zymosan and then irradiated with 4 Gy X-rays. Cell viability and apoptosis were measured by the CCK-8 assay and flow cytometry at 24 h. In addition, the protective effect of zymosan against radiation in vitro was compared to that of 20 μg/mL LPS. In vivo, weight, the spleen index, and the thymus index were measured to evaluate the toxicity of 0, 5, 10, 20, and 10 mg/kg zymosan. In addition, rats were treated with 0, 2, 4, 8, or 10 mg/kg zymosan and then irradiated with 7 Gy X-rays. The survival rate, organ index were evaluated. The protective effect of zymosan against radiation in vivo was compared to that of 10 mg/kg LPS a positive control.ResultsThe viability and apoptosis of cells treated with different doses and treatment times of zymosan were not different from those of control cells (p < 0.05). Furthermore, cell viability and apoptosis were clearly improved after zymosan preadministration (p < 0.05). The radioprotective effect of zymosan was dose-dependent. In addition, the viability of cells pretreated with zymosan was higher than that of cells pretreated with LPS, and the apoptosis rate of zymosan-treated cells was lower than that of cells pretreated with LPS (p < 0.05). In vivo, weight, the spleen index and the thymus index were significantly decreased by zymosan at a concentration of 20 mg/kg (p < 0.05). Further experiments showed that the concentration at which zymosan exerted radioprotective effects was 10 mg/kg. The survival curves in the irradiated rats were barely separated between the LPS treatment and zymosan treatment.ConclusionZymosan administration before radiation exposure significantly increased cell viability and the survival rates of rats.

Highlights

  • This study aimed to confirm the cytotoxicity of zymosan in vitro and in vivo and determine the appropriate treatment time and the dose of zymosan

  • These results showed that zymosan did not affect cell viability

  • The cell apoptosis assay (Fig. 4c, d) revealed that the apoptosis rates of AHH-1 cells and HIECs were significantly reduced after pretreatment with LPS and zymosan and that the apoptosis rate of cells pretreated with zymosan was lower than that of cells pretreated with LPS (p < 0.05)

Read more

Summary

Introduction

This study aimed to confirm the cytotoxicity of zymosan in vitro and in vivo and determine the appropriate treatment time and the dose of zymosan. Humans are inevitably exposed to some radiation derived from various trace radionuclides, such as cosmic rays [1], buildings [2], and Wi-Fi radiation [3], but these natural sources of radiation rarely cause fatal radiation damage to human beings. Safety issues with nuclear sources can result in the generation of ionizing radiation, which may cause fatal radiation damage to humans or other organisms [5]. In recent years, increasing attention has been paid to radiationrelated research worldwide by patients, physicians and staff in radiation related departments [6]. Most radioprotective drugs and drugs used to treat radiation exposure in the research stage have some shortcomings such as unclear effects, unclear mechanisms or high toxicity, so they are limited to preventive administration and injection after radiation exposure has no obvious therapeutic effect

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.