Abstract

Construction projects face several challenges, such as budget overruns, project delays, rework, and waste of materials. Most of them are caused by lengthy and complex supply chains involving multiple entities, processes, and interactions. Studies suggest that technologies like robotics, 3D printing, and artificial intelligence have the potential to reduce the complexity of traditional supply chains. In the context of 3D concrete printing, researchers have focused on the robotic systems and suitable construction materials. However, limited attention was focused on the impact on the construction supply chain (CSC). Although studies in healthcare and aviation investigated the implications of new technologies in their supply chains, the outcome cannot be directly applied to the CSC. In addition, studies that assessed the impact of new technologies on the CSC are limited and mostly qualitative. This study addresses this gap by developing a methodology to simulate the implications of 3D printing on the CSC. The methodology adopted contains four elements: 1) Develop supply chain networks, b) Identify input parameters c) Simulate the supply chain networks, and d) Analyze and discuss results. Results from this preliminary study indicate 15.8% and 52.6% lesser entities in CSC-2 and CSC-3, respectively, when compared to CSC-1; a 0.2% and 28.2% decrease in overall effort in CSC-2 and CSC-3. respectively, when compared to CSC-1; and an overall cumulative performance increase of 18.5% and 51.6% in CSC-2 and CSC-3, respectively, when compared to CSC-1. Findings from this study can help construction professionals to understand the implications of 3D printing in the CSC and to assist in easier adoption into the industry. However, caution should be exercised when generalizing to other CSC scenarios or the entire construction industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.