Abstract

Adhesives derived from renewable resources allow wood panel producers to make lower cost alternatives to formaldehyde-based adhesive resins. Among them, adhesive components extracted from industrial by-products or wastes are the most important research fields in the efficient utilization of waste and cost reduction. In our study, the rapeseed flour, which is a by product from the production of biodiesel extracted from rapeseed, was introduced to develop alternative adhesives for the production of wood flooring. The rapeseed flour was hydrolyzed with 1% sodium hydroxide solution and PF prepolymers were prepared with 3-molar ratios, 1.8, 2.1 and 2.4. The linear fracture mechanics was introduced to evaluate the glue bond quality in wood flooring composed of fancy-veneered and plywood, and the formaldehyde emission and adhesive penetration were also investigated. The formaldehyde emissions of wood flooring met the requirement of the standard of <TEX>$SE_0$</TEX> specified in the KS standard. The rapeseed flour adhesive penetrated sufficiently into the vessel elements and lumens in fancy veneer and plywood and gave strong bond quality to the wood flooring. The fracture mechanics was introduced to evaluate the adhesive joint between fancy veneer and plywood. The critical stress intensity factor (<TEX>$K_{IC}$</TEX>) of boliva overlayed wood flooring was increased with increasing molar ratio and this was the same tendency in oak overlayed wood flooring. From the results, the formulated adhesives were efficiently used to bond fancy veneer onto the plywood to make wood flooring and showed a potential to be used as a component of environmentally friendly adhesive resin systems for production of flooring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call