Abstract

The addition of ethane to nitrogen dioxide either during exposure to radiation transmitted by pyrex, or afterwards, reduces the amount of oxygen formed. At room temperature this is apparently due to the effectiveness of ethane in promoting the reverse reaction of nitric oxide and oxygen to form nitrogen dioxide. At temperatures over 100° there is a reaction which uses oxygen atoms produced in the primary process. Nitroethane (or nitrosoethane) is formed along with carbon monoxide, carbon dioxide, and some methane. The results suggest that acetaldehyde is an intermediate, but acetaldehyde could not be detected because it would react thermally with nitrogen dioxide. It is not possible to give a complete explanation of the results, but suggestions can be made which might form the basis for later work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.