Abstract

The liquid precursors of calcium hydroxide and diammonium hydrogen phosphate were injected into the plasma jet generated by the SG-100 torch to synthesize the hydroxyapatite (HA) coatings. Three operational deposition process parameters, namely: (i) electric power, (ii) spray distance, and (iii) scan speed were varied. The process enabled synthesization of coatings with HA as major phase onto stainless steel substrates. The coatings were deposited to reach the thickness of about 50μm with high rate ranging from 3μm to nearly 7μm by pass of torch. The X-ray diffraction (XRD) analysis of coatings enabled finding of HA accompanied by calcium phosphates, calcium oxide, and calcium carbonate. The presence of the carbonates was confirmed by Fourier Transform Infrared (FTIR) spectroscopy and by elemental mapping made with the use of Electron Dispersive X-ray Spectroscopy (EDS). The morphology of coatings, observed using scanning electron microscope (SEM), revealed fine-grained microstructure and porosity in the range of 1.3 to 5.1%. The adhesion of coatings obtained using scratch test characterized by critical force was in the range of 2.5 to 3.6N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.