Abstract

PurposeThe purpose of this study is to confirm whether it is possible to acquire a certain degree of diagnostic ability even with a small dataset using domain-specific transfer learning. In this study, we constructed a simulated caries detection model on panoramic tomography using transfer learning.MethodsA simulated caries model was trained and validated using 1094 trimmed intraoral images. A convolutional neural network (CNN) with three convolution and three max pooling layers was developed. We applied this caries detection model to 50 panoramic images and evaluated its diagnostic performance.ResultsThe diagnostic performance of the CNN model on the intraoral film was as follows: C0 84.6%; C1 90.6%; C2 88.6%. Finally, we tested 50 panoramic images with simulated caries insertion. The diagnostic performance of the CNN model on the panoramic image was as follows: C0 75.0%, C1 80.0%, C2 80.0%, and overall diagnostic accuracy was 78.0%. The diagnostic performance of the caries detection model constructed only with panoramic images was much lower than that of the intraoral film.ConclusionDomain-specific transfer learning methods may be useful for saving datasets and training time (179/250).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.