Abstract

Retinal microsurgery requires highly dexterous and precise maneuvering of instruments inserted into the eyeball through the sclerotomy port. During such procedures, the sclera can potentially be injured from extreme tool-to-sclera contact force caused by surgeon's unintentional misoperations. We present an active interventional robotic system to prevent such iatrogenic accidents by enabling the robotic system to actively counteract the surgeon's possible unsafe operations in advance of their occurrence. Relying on a novel force sensing tool to measure and collect scleral forces, we construct a recurrent neural network with long short-term memory unit to oversee surgeon's operation and predict possible unsafe scleral forces up to the next 200ms. We then apply a linear admittance control to actuate the robot to reduce the undesired scleral force. The system is implemented using an existing "steady hand" eye robot platform. The proposed method is evaluated on an artificial eye phantom by performing a "vessel following" mock retinal surgery operation. Empirical validation over multiple trials indicates that the proposed active interventional robotic system could help to reduce the number of unsafe manipulation events. We develop an active interventional robotic system to actively prevent surgeon's unsafe operations in retinal surgery. The result of the evaluation experiments shows that the proposed system can improve the surgeon's performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.