Abstract

Bioceramics of composition xCr2O3∙(43-x) CaO∙42SiO2∙15P2O5 (x varying from 0 to 8 mol%) have been synthesized in the laboratory by using sol-gel technique. The morphology and structure has been determined by using Powder X-ray Diffraction, Fourier Transform Infrared and Raman spectroscopy and Field Emission Scanning Electron Microscopy. The in vitro bio mineralization behavior has been assessed by immersion in simulated body fluid for 7 days. The results obtained in our studies have indicated excellent hydroxyapatite formation ability of our samples. Drug delivery property of synthesized samples has been checked by using UV-spectroscopy of antibiotic 'gentamicin'. The in vitro drug release profile was fitted best in the Higuchi model with the highest value of coefficient of determination (R2 = 0.9970). Antimicrobial properties have been evaluated from minimum inhibitory concentration and time kill assay values. The cellular response has been investigated by using human osteosarcoma MG 63 cell line. Also to check charge on the synthesized samples, Zeta potential studies have been conducted and it has been observed that samples carry negative charge when immersed in simulated body fluid. Negative surface charge provide suitable environment for cell adhesion and proliferation. Experiments have been undertaken to explore suitable composition with an objective of development of suitable implant material for bone regeneration applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.