Abstract

A cation exchange polymer resin embedded with magnetic nanoparticles and modified with crown ether was developed for urinalysis to rapidly monitor levels of (90)Sr exposure in humans who have been involved in a nuclear event. Invention of the resin matrix of 2-acrylamido-2-methyl-1-propanesulfonic acid cross-linked with divinylbenzene incorporated a Sr(2+) chelating agent, di-tert-butyl-cyclohexano-18-crown-6 through surface immobilization using a molecular modifier 1-octanol. The performance of these magnetic cation exchange resin particles was investigated by separating (90)Sr in the presence of (90)Y progeny. Masking agents and precipitants were examined to ascertain that sodium hydroxide at pH 7.5 was capable of selectively removing 89 ± 2% (90)Y before subsequent (90)Sr uptake. Preliminary investigations in rapid urinalysis were successful in isolating 83 ± 2% (90)Sr when pH was optimized to 9, with a sample turnover time <2 h, which is promising for radiological emergencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.