Abstract

The purpose of this paper is to identify, for given technology levels (TRL) and mission requirements, those parameters that are critical for preliminary sizing of a hypersonic airbreathing airliner. Mission requirements will dictate a solution space of possible vehicle architecture capable of meeting cruise conditions as well as of taking-off (TO) and landing. In practice, once defined a range of cruise vehicle architectures, constraints are imposed (as to all passenger airliners), such as: 1. take off (=TO) and landing distance (so-called field length, FL): FL no longer than for the B-747-400, or 10000 ft; 2. completing TO with one engine off; 3. max acceleration at TO and climb-out (CO) = 0.4 g; 4. Hydrogen fuel (Meeting NOx emission limits (EINOx) is a further constraint not discussed in this paper). These constraints enable focusing on a realistic design out of the broad range of vehicles capable of performing the given mission. Thus a realistic vehicle must not only integrate aerodynamics and propulsion system; in fact, it is the result of many iterations in the design space, until performance and constraints are successfully achieved and met. The Gross Weight at Take Off (TOGW) was deliberately discarded as a constraint, based on Previous studies by Czysz. Typically, limiting from the beginning the TOGW leads to a vicious spiral where weight and propulsion system requirements keep growing, eventually denying convergence. In designing passenger airliners, in fact, it is the payload that is assumed fixed from the start, not the total weight. A parametric analysis of the hypersonic vehicle architecture is presented: in particular, optimal size, weight and geometrical shape are defined for different mission requirements. This analysis has shown that, it is possible to define a range of possible successful solutions for the European LAPCAT II project.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call