Abstract

PURPOSE Previous studies have confirmed the influence of dehydration and an altered mucus (e.g., due to pathologies) on phonation. However, the underlying reasons for these influences are not fully understood. This study was a preliminary inquiry into the influences of mucus architecture and concentration on vocal fold oscillation. METHOD Two excised human larynges were investigated in an in vitro setup. The oscillations of the vocal folds at various airflow volume rates were recorded through the use of high-speed imaging. Engineered mucus containing polymers (interconnected polymers and linear polymers) was applied to the vocal folds. From the high-speed footage, glottal parameters were extracted through the use of objective methods and were compared to a gold standard (physiological saline solution). RESULTS Variations were found for all applications of mucus. Fundamental frequency dropped and the oscillatory behavior (speed quotient [SQ], closing quotient [CQ]) changed for both larynges. The 2 applied mucus architectures displayed different effects on the larynges. The interconnected polymer displayed clear low-pass filter characteristics not found for the linear polymer. Increase of polymer concentration affected parameters to a certain point. CONCLUSION The data confirm results found in previous studies. Furthermore, the different effects-comparing architecture and concentration-suggest that, in the future, synthetic mucus can be designed to improve phonation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.