Abstract

The tectonic setting of Java island, located at southwestern edge of the Eurasia continent, is dominated by the subduction of Indo-Australia plate. One of the characteristics of active subduction is active seismicity, the generation of arc magmatism and volcanic activity. Mt. Merapi is one example of active volcano related with the subduction process. It is one of the most active volcanoes with location close to high population area. To better understand this area, we employed the Receiver Function technique, a method to image sub surface structure by removing the vertical component from horizontal component. First, we collected high magnitude events and processed RF with water level deconvolution method. Then, we constructed synthetic model with initial velocity input from previous tomography model. Note that we used reflectivity method in generating synthetic model with input parameters matched with parameters from real data processing. Next, we adjusted velocity inputs mainly on tops sediments (1-3 km) to include sediment layers and volcanic rocks, mid-depth low velocity zone that may be related with magma chamber and depth of crust-mantle boundary. Current forward velocity models show a relatively good agreement from 3 stations (ME25, ME32 and ME36). We estimate a thin layer of sediments followed a zone of velocity layer at a depth of 10-15 km and crust-mantle boundary ranging from 26-29 km. In this study, simulated that the signal of sediments layer and low velocity layers interfere main crust mantle boundary that supposed to be highest signal after the P wave in the typical receiver function study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.