Abstract

Optical emission spectroscopy (OES) using the trace rare gases of Ar and Xe have been carried out in a radio frequency (RF) driven negative ion source at Institute of Plasma Physics, Chinese Academy of Science (ASIPP), in order to determine the electron temperature and density of the hydrogen plasma. The line-ratio methods based on population models are applied to describe the radiation process of the excited state particles and establish their relations with the plasma parameters. The spectral lines from the argon and xenon excited state atoms with the wavelength of 750.4 and 828.0 nm are used to calculate the electron temperature based on the corona model. The argon ions emission lines with the wavelength of 480 and 488 nm are selected to calculate the electron density based on the collisional radiative model. OES has given the preliminary results of the electron temperature and density by varying the discharge gas pressure and RF power. According to the experimental results, the typical plasma parameters is Te ≈ 2–4 eV and ne ≈ 1 × 1017–8 × 1017 m−3 in front of plasma grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.