Abstract
Modified IS (Iranian Sun) plasma focus (10 kJ,15 kV, 94 μF, 0.1 Hz) has been used to produce the short-lived radioisotope 13N (half-life of 9.97 min) through 12C(d,n)13N nuclear reaction. The filling gas was 1.5–3 torr of hydrogen (60%) deuterium (40%) mixture. The target was solid nuclear grade graphite with 5 mm thick, 9 cm width and 13 in length. The activations of the exogenous target on average of 20 shots (only one-third acceptable) through 10–13 kV produced the 511 keV gamma rays. Another peak found at the 570 keV gamma of which both was measured by a NaI portable gamma spectrometer calibrated by a 137Cs 0.25 μCi sealed reference source with its single line at 661.65 keV and 22Na 0.1 μCi at 511 keV. To measure the gamma rays, the graphite target converts to three different phases; solid graphite, powder graphite, and powder graphite in water solution. The later phase approximately has a doubled activity with respect to the solid graphite target up to 0.5 μCi of 511 keV and 1.1 μCi of 570 keV gamma lines were produced. This increment in activity was perhaps due to structural transformation of graphite powder to nano-particles characteristic in liquid water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.