Abstract

The purpose of this study was to evaluate the application of a new elastographic technique, acoustic radiation force impulse (ARFI) imaging, and its diagnostic performance for characterizing breast lesions. One hundred consecutive female patients with 126 breast lesions were enrolled in our study. After routine breast ultrasound examinations, the patients underwent ARFI elasticity imaging. Virtual Touch tissue imaging (VTI) and Virtual Touch tissue quantification (Siemens Medical Solutions, Mountain View, CA) were used to qualitatively and quantitatively analyze the elasticity and hardness of tumors. A receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of ARFI for discrimination between benign and malignant breast lesions. Pathologic analysis revealed 40 lesions in the malignant group and 86 lesions in the benign group. Different VTI patterns were observed in benign and malignant breast lesions. Eighty lesions (93.0%) of benign group had pattern 1, 2, or 3, whereas all pattern 4b lesions (n = 20 [50.0%]) were malignant. Regarding the quantitative analysis, the mean VTI-to-B-mode area ratio, internal shear wave velocity, and marginal shear wave velocity of benign lesions were statistically significantly lower than those of malignant lesions (all P < .001). The cutoff point for a scoring system constructed to evaluate the diagnostic performance of ARFI was estimated to be between 3 and 4 points for malignancy, with sensitivity of 77.5%, specificity of 96.5%, accuracy of 90.5%, and an area under the curve of 0.933. The application of ARFI technology has shown promising results by noninvasively providing substantial complementary information and could potentially serve as an effective diagnostic tool for differentiation between benign and malignant breast lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call