Abstract

To evaluate the preliminary results of a prospective trial using three-dimensional (3D) treatment for lung cancer. Seventy patients with inoperable Stage I through IIIB lung cancer were treated with three-dimensional thoracic irradiation with or without chemotherapy (35% received chemotherapy). Total prescribed dose to the tumor ranged from 60-74 Gy (uncorrected for lung density). All patients were evaluated for local control, survival, and development of pneumonitis. These parameters were evaluated in respect to and compared with three-dimensional parameters used in their treatment planning. With a minimum follow-up of 6 to 30 months, the 2-year cause-specific survival rate for Stages I and II was 90% and 53% for Stage III (no difference between Stages IIIA and IIIB). Patients with local tumor control had a better 2-year overall survival rate (47%) than those with local failure (31%). Volumetrically heterogeneously calculated doses were important to the accurate delineation of dose-volume coverage as there was a wide range of discrepancies between a homogeneously prescribed point dose calculation and the heterogeneously calculated volume coverage of that prescription. High-grade pneumonitis was correlated with the location of the tumor with lower lobe tumors having a much higher risk than those with upper lobe tumors. A critical volume effect and threshold dose were apparent in the development of high-grade pneumonitis. Three-dimensional therapy for lung cancer has been practically implemented at the Mallinckrodt Institute of Radiology and shows promising results in our preliminary analysis. The incidence of high-grade pneumonitis, however, warrants careful selection of patients for future dose escalation. Future dose escalation trials in lung cancer should be directed to volumes that limit the amount of elective nodal irradiation. However, the volume of necessary elective nodal irradiation remains unknown and should be studied prospectively. Dose escalation trials are indicated and may be facilitated by smaller target volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.