Abstract

Time-domain diffuse optical tomography (TD-DOT) provides information-rich data that have not yet been fully exploited for image reconstruction, notably to increase imaging spatial resolution. Current TD-DOT scanners suffer from a very low sensitivity owing to their small number of detection channels. This leads to excessively long acquisition times for in vivo imaging. To obtain a higher number of detection channels, thus increasing detection density, a low-cost time-correlated single photon counting (TCSPC) system dedicated to TD-DOT imaging was designed and developed, resorting solely to off-the-shelf electronic components to reduce costs, in distinction to custom application-specific integrated circuit (ASIC) solutions. It features 4 input channels with a 13.02 ps bin width and a 18.1 ps FWHM accuracy throughout a measurement dynamic range of 12.5 ns. Each channel includes a leading-edge discriminator, with a programmable threshold, for direct interfacing with off-the-shelf photodetector modules. A software-programmable delay line was added to the channel signal path to compensate for undesired propagation delays. The system also supports a virtually unlimited number of TCSPC channels using a daisy-chain configuration through an onboard Ethernet switch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.