Abstract

Thermal lattice Boltzmann simulations are prone to severe numerical instabilities. While octagonal velocity lattices increase the range of temperatures that can be successfully simulated, the ranges are insufficient for many applications. Second order interpolation is required to correlate diagonal streaming to the square spatial grid. Here, the role of energy-dependent octagonal lattices is examined, an idea spawned from Gauss–Hermite quadratures. A nontrivial allocation scheme is now required to ensure moment conservation in connecting to the spatial grid. For the energy-dependent lattices, it is shown that there are no lower bounds to the temperature, thus allowing for higher Reynolds number simulations. Simulations are presented and compared to theory (viscosity and sound speed dependence on temperature) showing excellent agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.