Abstract

This study aimed to evaluate whether the image quality of virtual monochromatic spectral imaging with fast kVp switching dual-energy CT (DECT) can be comparable to that of 120-kVp single-energy CT (SECT) without increasing the radiation dose. We retrospectively identified 15 postoperative patients who had undergone both DECT and 120-kVp SECT within a short period of time for follow-up after brain surgery. Simulated 65 keV monochromatic images were reconstructed from DECT data. Subjective image noise, gray-white matter contrast, and overall image quality were rated using a four-point scale. Quantitative measurement of noise, contrast-to-noise ratio (CNR), and posterior fossa beam-hardening artifact were also performed. The figure of merit (FOM), calculated as CNR(2)/CTDIvol, was used to quantify image quality improvement per exposure risk. The mean CTDIvol was 70.2 ± 0.3 mGy for DECT, which was 11 % lower than SECT (78.9 ± 2.1 mGy). All images were graded above clinically acceptable. Quantitative and qualitative measures for simulated 65-keV images were comparable with SECT images, except for increase in subjective noise. FOM was significantly greater for simulated 65-keV images (P = .03). Our results indicate that virtual monochromatic imaging possibly provides comparable image quality to that afforded by 120-kVp SECT without increasing the dose in routine head CT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call