Abstract

Precise knowledge of muscle architecture and innervation patterns is essential for the development of accurate clinical and biomechanical models. Although the gross anatomy of the human abdominal muscles has been investigated, the finer details of their microanatomy are not well described. Fascicles were systematically sampled from each of the human abdominal muscles, and small fiber bundles from selected fascicles stained with acetylcholinesterase to determine the location of motor endplate bands, myomyonal junctions, and myotendinous junctions. Statistical analysis was used to ascertain the association between fascicular length and number of endplate bands. The number of endplate bands along a fascicle was variable between different portions of each muscle, but was strongly correlated with fascicular length (r = 0.814). In fascicles less than 50 millimeters (mm) in length, only a single endplate band was generally present, while multiple endplate bands (usually two or three) were found in fascicles longer than 50 mm. The presence of myomyonal junctions throughout the longer (>50 mm) fascicles verified that they were composed of short, intrafascicularly terminating fibers, while shorter fascicles comprised fibers spanning the entire fascicular length. This preliminary study provides evidence that multiple endplate bands are contained in some regions of the abdominal muscles, an arrangement that differs from most human appendicular muscles. It is not clear whether the variations in the described fine architectural features reflect regional differences in muscle function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call