Abstract

An analytical study of the turbulent heat transfer in the helium-cooling porous channels for fusion reactors was performed using a direct-simulation numerical approach with no empirical correlations such as the Darcy's law and effective thermal conduction in the porous media. A numerical analysis code for the helium-cooling porous channels was developed and preliminary numerical analyses were carried out. A new porous calculation model was proposed. The porous media was simulated as cubic solids and the direct-contact thermal conduction in the channel was simulated using solid bars. From the numerical analysis results, it was identiñed that the present porous model is useful to predict the turbulent heat transfer characteristics in the helium-cooling porous channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.