Abstract

Abstract This paper outlines an analysis of the spatial distribution of sediment production, delivery and yield in the Xihanshui River basin, South Gansu, China, using the modelling tools of SedNet (Prosser et al., 2001). This model can assess the delivery efficiency to downstream locations, as well as identifying locations with high rates of sediment production. Preliminary model experiments assist understanding of the spatial dynamics of these sediment processes and evaluation of the effectiveness of soil conservation practices since the mid-1980s. Three scenario years (dry, average and wet) from the 1983–2005 record are identified and modelled, and land use and management are represented in the model to reflect known changes since the 1980s. Results show hillslope erosion to be a dominant source of sediment supply, causing the latter to decrease ten-fold between 1984 and 1997/2000. Estimated bank erosion and floodplain deposition rates are sensitive to parameter values, but bank erosion appears less sensitive than hillslope supply to rainfall. The model can be used to assess net changes in floodplain storage; for default parameters, floodplain deposition rates are 25–200 times the rates of bank erosion depending on the climate scenario. Comparing simulation results with measured sediment yields at the three gauging stations indicates encouraging agreement in 2000. In 1984 (the wet year), the model under-predicts, suggesting that additional unmodelled sediment production processes, especially mass movement and gully erosion, may be important in wet years. Mass movement inventory data could close the gap between the high yields measured in the wet scenario year and the estimated yield due to hillslope erosion alone. In 1997 (the dry year), the model over-predicts; this suggests that the land use change parameters required to reflect the effects of conservation may not have been sufficient, implying that conservation has been generally effective, and that evidence of declining sediment yield is not simply a reflection of drier conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call