Abstract

As part of our ongoing Phase 1 clinical trial to establish the safety and feasibility of methylene blue photodynamic therapy (MB-PDT) for human deep tissue abscess cavities, we have shown that determination of abscess wall optical properties is vital for the design of personalized treatment plans aiming to optimize light dose. To that end, we have developed and validated an optical spectroscopy system for the assessment of optical properties at the cavity wall, including a compact fiber-optic probe that can be inserted through the catheter used for the standard of care abscess drainage. Here we report preliminary findings from the first three human subjects to receive these optical spectroscopy measurements. We observed wide variability in concentrations of oxy- and deoxy-hemoglobin prior to MB administration, ranging from 7.3-213 μM and 0.1-47.2 μM, respectively. Reduced scattering coefficients also showed inter-patient variability, but recovered values were more similar between subjects (5.5-10.9 cm-1 at 665 nm). Further, methylene blue uptake was found to vary between subjects, and was associated with a reduction in oxygen saturation. These measured optical properties, along with pre-procedure computed tomography (CT) images, will be used with our previously developed Monte Carlo simulation framework to generate personalized treatment plans for individual patients, which could significantly improve the efficacy of MB-PDT while ensuring safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call