Abstract
To investigate the intervention effect of extracorporeal shock wave combined with manual traction on fixation-induced knee contracture and its influence on PTEN-PI3K/AKT signaling pathway. Thirty-six SD male rats were randomly divided into six groups. The left knee joints were not fixed in the control group (C group). Rats in other groups underwent brace fixation in the extended position of the left knee. After 4 weeks of bracing, it is randomly divided into five groups: Model group (M group), natural recovery group (NR group), extracorporeal shock wave treatment group (ET group), manual traction group (MT group), and extracorporeal shock wave combined with manual traction group (CT group). Joint range of motion (ROM) of left knee was carried out to assess joint function. Hematoxylin and eosin (HE) staining and Masson staining were respectively used to assess the cell number and collagen deposition expression. Immunohistochemical staining and Western blot were used to assess protein levels of phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (AKT). The combined therapy was more effective than extracorporeal shock wave therapy or manual traction alone against the joint ROM, cell number and the collagen deposition, low-expression of PTEN, and overexpression of PI3K/AKT in the anterior joint capsule of rats with knee extension contracture. Extracorporeal shock wave combined with manual traction can promote the histopathological changes of anterior joint capsule fibrosis, upregulate the protein expression of PTEN and downregulate the protein expression of PI3K/AKT in the fibrotic joint capsule in a rat joint contracture model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.