Abstract

The Quorum Sensing (QS) system has attracted the interest of researchers as a cell-cell communication system. In activated sludge processes, the production of extracellular polymeric substances (EPS), biofilms and floc formation are regulated by the QS system. Hence, disruption of the QS system, called Quorum Quenching (QQ), could have a significant effect on the quality and quantity of excess sludge. In the present research, the quorum quenching bacteria, Rhodococcus sp. BH4 was used as a quorum quencher and was entrapped in an alginate structure (QQ beads). Three separate sequential batch reactors (SBR) were constructed and operated as a control reactor, a Low-QQ reactor (containing 150 QQ beads), and a High-QQ reactor (containing 600 QQ beads). Results indicated that the presence of QQ beads in the aeration reactor leads to a decrease in EPS content and mean floc particle size in the both Low-QQ and High-QQ reactors. The eukaryotic community was changed significantly so that the QS disruption caused an enhancement in microbial predation. The presence of QQ beads also led to a 16 and a 26% decrease in the Yobs coefficient within the Low-QQ and High-QQ reactors, respectively. Findings of this research revealed a new application of the QQ system in the activated sludge process, but additional studies are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.