Abstract

In order to explore the cathode with good repetition quality for the magnetically insulated transmission line oscillators, an improved metal-dielectric cathode is proposed and investigated experimentally. The cathode is designed to be step-like shape, and thin copper plated boards are periodically and compactly arrayed on the surface of the cathode base, which ensures the uniformity of the electrons emitted from the cusps of the copper plated boards. According to the numerical simulation results, the step-like shape is beneficial to convert the kinetic energy of the magnetic insulating current partially and enhance the beam-wave interaction efficiency. Finally, a preliminary experiment of an L-band magnetically insulated transmission line oscillator (MILO) with the improved metal-dielectric cathode is carried out. A high power microwave (HPM) with an average power of 1.95 GW is generated from the MILO, with an efficiency of 13.5%. Under the same experiment condition, the output power and main frequency with the presented cathode are almost the same to those with the velvet cathode. Apart from that, metal-dielectric cathode has the merits of small outgassing and long lifetime, and all of these make the improved metal-dielectric cathode significantly promising for the MILO repetition operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.