Abstract

Emissive features of flavins (Riboflavin/RF, Flavin MonoNucleotide/FMN and Flavin Adenine Dinucleotide/FAD) labeled native Deoxyribonucleic Acid (DNA) on Polyvinylpyrrolidone (PVP)-coated silver nanoparticles (SNPs), have been studied. The dual emission of flavins in DNA-PVP-coated SNPs systems is strongly influenced by the reaction time and temperature. Changes in the RF emissive features occur as a side effect when DNA is covalently linked hence, the RF destruction depends on DNA damage. Even if in an oxidation process, the FAD-DNA - PVP-coated SNPs system acts as a weak scavenger of reactive oxygen species, its antioxidant activity is approx. five times higher than that of RF-DNA-PVP-coated SNPs system. Destruction of RF by a riboflavin-mediated DNA photo-oxidation process that occurs on PVP-coated SNPs is suggested. Results have relevance in the redox process of riboflavin and provide valuable information for the further development of novel flavin-based SNPs systems as fluorescent antioxidant markers to solve several biological barriers in humans, such as protein-DNA interaction, cell binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call