Abstract

Para-18F-fluorohippuric acid (18F-PFH) and ortho-124I-iodohippuric acid (124IOIH) were recently identified as potential radiotracers suitable for conducting renography using positron emission tomography (PET). The aim of this work was to estimate preliminary human-equivalent internal radiation dose of 18F-PFH and 124I-OIH using the biodistribution data reported in healthy rats. The results were compared with the absorbed dose data of technetium-99m-mercaptoacetyltriglycine (99mTc- MAG3) as documented in the International Commission on Radiological Protection (ICRP) publication 80. The medical internal radiation dose (MIRD) formula was applied to extrapolate data from rats to human and to project the absorbed radiation dose for various organs in humans. S factor was calculated by Monte-Carlo N-particle (MCNP) simulation. Our dose prediction shows that an injection of 18F-PFH or 124I-OIH in humans would result in an estimated effective absorbed dose of 0.09 or 0.17 µSv/MBq respectively for whole body, which is about 135 or 73 times respectively lower than that obtained with an injection of 99mTc-MAG3. All organs except kidneys would receive an estimated effective absorbed dose of <0.1 µSv/MBq for 18F-PFH or 124I-OIH. Kidneys would receive a dose of 0.83 or 0.77 µSv/MBq respectively for 18F-PFH or 124I-OIH. Our results indicate that 18F-PFH and 124I-OIH would deliver much safer levels and lower radiation doses to the patients compared to 99mTc-MAG3 and warrants a clinical trial to estimate the radiation doses more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call