Abstract

<p>Shear zones associated with major thrust faults generally record overprinting of deeper crustal deformation signatures by shallower crustal signatures due to faults climbing up-section along the transport direction. In this study, we investigate the deformation signatures related to the shallow crustal conditions on one such major thrust, the Ramgarh thrust (RT) from Sikkim Himalayan Fold Thrust Belt (FTB). RT is an intermediate crustal thrust that has recorded a translation of ~58-65 km and overprinting of deformation structures. RT acts as the roof thrust of Lesser Himalayan duplex, hence got reactivated several times, and records a long deformation history.</p><p>In Sikkim Himalaya, the frontal most exposure of the RT is near Setikhola (N26° 56.178’, E88° 26.607’) as ~57m thick shear zone that exposes the lower Lesser Himalayan Daling quartzite and phyllite in the hanging wall over Gondwana sandstone in the footwall. The mean bedding is oriented ~72°, 298°, and the mean dominant cleavage is ~ 70°, 305°. The outcrop forms the overturned forelimb of a fault-bend antiform. The outcrop is strongly fractured. Based on the angular relationship with respect to the bedding, three sets of fractures were identified. Low angle fractures (< 30° to bedding) constitute ~20.23 %, moderate (30° – 60° to bedding) and high angle fractures (60°- 90° to bedding) constitute ~39.88% of the total fracture population. The fractures are uniformly distributed throughout the stretch of the shear zone. Daling quartzites accommodate more number of fractures than the phyllites. Preliminary investigation indicates that the thicker beds have higher fracture intensity than thinner beds. Few of the fractures were identified as opening mode fractures based on their association with the plumose structures. ~ 17.3% of the total measured fractures records slickenline lineations. These shear fractures reveal two clusters on the stereonet (Set 1: ~90°, 098°; Set 2: ~77°, 331°). They have a dihedral angle of ~54⁰ and set 1 and set 2 are oriented ~ 27⁰ and ~ 32⁰ to the bedding respectively. Based on preliminary analysis, the local maximum principal stress (σ1) is oriented sub-horizontally with a SSW trend. Interestingly, this estimate is in agreement with the current global stress orientations from the Eastern Himalaya, where σ1 is near horizontal and trends NNE – SSW (Larson et al., 1999).</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.