Abstract

This study investigated the feasibility of replacing urinary epithelial cells with oral keratinocytes and transforming growth factor-β1 (TGF-β1) small interfering RNA (siRNA)-transfected fibroblasts seeded on bladder acellular matrix graft (BAMG) in order to reconstruct tissue-engineered urethra. Constructed siRNAs, which expressed plasmids targeting TGF-β1, were transfected into rabbit fibroblasts. The effective siRNA was screened out by RT-PCR and was transfected into rabbit fibroblasts again. Synthesis of type I collagen in culture medium was measured by enzyme-linked immuno sorbent assay (ELISA). Autologous oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts were seeded onto BAMGs to obtain a tissue-engineered mucosa. The tissue-engineered mucosa was assessed morphologically and with the help of scanning electron microscopy. The TGF-β1 siRNA decreased the expression of fibroblasts synthesis type I collagen. Oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts were seeded onto sterilized BAMG to obtain a tissue-engineered mucosa for urethral reconstruction. The compound graft was assessed using scanning electron microscope. Oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts had a good compatibility with BAMG. The downregulation of fibroblasts synthesis type I collagen expression by constructed siRNA interfering TGF-β1 provided a potential basis for genetic therapy of urethral scar. Oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts had good compatibility with BAMG and the compound graft could be a new choice for urethral reconstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call