Abstract

A small pulse detonation rocket engine (PDRE) was used as a predetonator to initiate detonation in its ejector. The detonation products discharged from the PDRE was not only ignition source for the ejector but also primary flow which entrained air from environment into the ejector. Stoichiometric liquid kerosene and gaseous oxygen were used as reactants for the PDRE. While in the ejector injected liquid kerosene was used as fuel and entrained air was used as oxidizer. Reactants in the ejector were ignited by the detonation wave and products discharged from the PDRE. Detonation was successfully initiation in present experiments. It was found that flame propagation upstream at the entrance of the ejector was inevitable, which affected the detonation initiation process in the ejector. Disks with orifices were placed at the entrance of the ejector to weaken the flame propagation upstream effect, which would affect the air flow entraining process, but the results show it worked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.