Abstract

Open chest management with delayed sternal closure (DSC) is a valuable strategy in the management of patients with postcardiotomy hemodynamic instability or severe coagulopathy. The conventional extemporized material available for off-label sternal stenting however may limit its efficacy. We evaluated outcomes of patients with refractory severe postcardiotomy cardiogenic shock (SPCCS) treated with DSC using a novel temporary sternal spreader (NTSS) which allows myocardial recovery by progressive controlled approximation of the sternal edges. Seven patients (4 male, mean age 66.5 ± 5 years) with refractory SPCCS showing acute hemodynamic instability at sternal closure, were implanted with the NTSS, consisting of stainless-steel branches linked to 2 diverging plates of polyether-ether ketone, whose progressive opening/closing mechanism can be controlled from outside the chest with a rotating steel wire. The sternal wound was closed by an elastic membrane to achieve a sterile field. Swan-Ganz monitoring was employed, and clinical outcomes evaluated. The device was successfully implanted in all patients without device-related complications or failures. Progressive approximation of sternal edges, titrated on cardiac index values, was successfully completed allowing subsequent uneventful sternal closure in all. Mean time from SPCCS to sternal closure was 70 ± 21 hours. No patient developed infective complications or late hemodynamic instability after device removal and sternal closure. One patient (14%) died of multiorgan failure on postoperative day 9. Despite the limited number of patients enrolled, the NTSS proved safe and effective in allowing complete myocardial recovery after SPCCS, avoiding hemodynamic instability related to abrupt sternal closure, with no occurrence of infective complications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.