Abstract

Recent work on high-performance lower-field MR systems has renewed the interest in assessing relative advantages and disadvantages of magnetic fields less than 1 T. The objective of the present work was to investigate signal-to-noise ratio (SNR) scaling of point-resolved spectroscopy as a function of field strength and to test the feasibility of proton MRS of triglycerides (TGs) in human in vivo myocardium at 0.75 T relative to 1.5 T and 3 T. Measurements at 0.75 T were obtained by temporarily ramping down a clinical 3 T MR scanner. System configurations at 0.75, 1.5 and 3 T featured identical hard- and software, except for differences in transmit/receive coil geometries and receive channel count, which were accounted for in SNR comparisons. Proton MRS was performed at 0.75 T, 1.5 T and 3 T in ex vivo tissue and in vivo calf muscle to measure T1 and T2 values as a function of field strength, which in turn served as input to simulations of SNR scaling and field-dependent TG fit errors. Preliminary in vivo spectra of myocardium were acquired at 0.75 T, 1.5 T and 3 T in healthy subjects. Measurements of both ex vivo tissue and in vivo muscle tissue at 0.75 T versus 1.5 T and 3 T confirmed decreasing T1 and increasing T2 * for decreasing field strengths. Using measured T1 , T2 and T2 * as input and using field-dependent echo time and bandwidth scaling, simulated Cramér-Rao lower bounds of TG amplitudes at 0.75 T were 2.3 and 4.5 times larger with respect to 1.5 T and 3 T, respectively. In vivo measurements demonstrate that human proton spectroscopy of TGs in cardiac muscle is feasible at 0.75 T, supporting the potential practical value of lower-field high-performance MR systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call