Abstract

BackgroundDuring the second and third year after birth the gut microbiota (GM) is subjected to important development. The polycyclic aromatic hydrocarbon (PAH) exposure could influence the GM in animal and early postnatal exposure is associated with neurodevelopment disorder in children. This study was designed to explore the possible influence of the polycyclic aromatic hydrocarbons (PAHs) on the composition of the gut microbiota (GM) and neurodevelopment in a sample of 38 healthy children at the age of 3 years.MethodsA brief development (Gesell Development Inventory, GDI) and behavior test (Child Behavior Checklist, CBCL) were completed on 3-yr-olds and stool samples were collected for 16S rRNA V4-V5 sequencing. The PAH-DNA adduct in the umbilical cord blood and the urinary hydroxyl PAHs (OH-PAHs) at the age of 12 months were measured as pre- and postnatal PAH exposure, respectively.ResultsThe most abundant two phyla were Bacteroidetes (68.6%) and Firmicutes (24.2%). The phyla Firmicutes, Actinobacteria, Proteobacteria, Tenericutes, and Lentisphaerae were positively correlated with most domain behaviors of the GDI, whereas the Bacteroidetes, Cyanobacteria, and Fusobacteria were negatively correlated. Correspondingly, the phyla Bacteroidetes, Actinobacteria, and Fusobacteria showed positive correlations with most CBCL core and broadband syndromes, whereas the Firmicutes, Verrucomicrobia, Synergistetes, Proteobacteria and Tenericules were negatively correlated. The OH-PAH levels were not significantly associated with the Firmicutes phylum whereas the Bacteroidetes, Bacteroidia, and Bacteroidales all showed significant negative association with the OH-PAH levels.ConclusionThe current findings suggest that composition of the GM is associated with neurodevelopment of the child. PAHs seem to change the relative abundance of some taxa (some deleted and some recruited) to counteract the negative effects of the PAHs.

Highlights

  • During the second and third year after birth the gut microbiota (GM) is subjected to important development

  • polycyclic aromatic hydrocarbons (PAHs) concentrations were positively correlated with severity of children’s neurobehavioral problems characterized by compulsivity and aggressivity [34]. These findings suggested a possible relationship between early indoor exposure to PAHs and children’s later neurobehavioral development, and intellectual and neurodevelopmental disorders

  • Influence of the PAH exposure on GM and neurodevelopment We explored the influence of the PAH exposure on the relative abundance of the GMs

Read more

Summary

Introduction

During the second and third year after birth the gut microbiota (GM) is subjected to important development. The polycyclic aromatic hydrocarbon (PAH) exposure could influence the GM in animal and early postnatal exposure is associated with neurodevelopment disorder in children. This study was designed to explore the possible influence of the polycyclic aromatic hydrocarbons (PAHs) on the composition of the gut microbiota (GM) and neurodevelopment in a sample of 38 healthy children at the age of 3 years. The period of rapid brain growth spans from the 3rd trimester of pregnancy to at least 2 years after birth [1] This rapid-growth period is a window of opportunity in which foundational processes such as proliferation and migration of glia, myelination of axons, and synaptogenesis are occurring and extremely plastic and can be subjected to remodeling in response to some environmental inputs, with subsequent influence on behavior and learning processes [2]. Prenatal influences like maternal factors [19], gestational exposures [20,21,22,23], and mode of delivery [24, 25], were all associated with the diversity and architecture of the infant’s GM during the first year of life

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call