Abstract

The influence of heat treatment conditions on the mechanical behavior and microstructure of CuFe2P (ASTM C19400) in comparison to deoxidized-high-phosphorus (DHP-Cu/ASTM C12200) tubes was investigated. The aim of this study was the enhancement of understanding of microstructure/thermal treatment/strength relationships which could be further utilized for the manufacturing of components exhibiting superior performance and reliability for refrigeration and heat exchanger applications. Microstructural examination employing optical metallography and scanning electron microscopy is used for the evaluation of the recrystallization progress and grain growth processes. In addition, tensile testing was conducted to CuFe2P and DHP tubes following the application of heat treatment cycles, in accordance to the EN 10002-1 specifications. Mechanical properties and microstructure evaluation showed that CuFe2P material is fully recrystallized at 740 °C and DHP at 400 °C for 20 min. Recrystallization initiation varies within the range of 640-660 °C for CuFe2P and below 400 °C for DHP tubes. The tensile strength of the CuFe2P tube decreased from 513 to 367 MPa, the hardness was reduced from 144 to 126 HV, while tensile elongation was significantly improved from 3 to 17%. At 640 °C, only isolated recrystallized areas were evident mainly at the Fe-based intermetallic particle/copper matrix interface areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.