Abstract

Abstract The present work was aimed to evaluate the suitability of resorcinol-formaldehyde carbon gels as adsorbent for water pollutants removal. The carbon gels were characterized using N2 adsorption-desorption isotherm for specific surface area, and Fourier transform infrared (FTIR) for surface functional groups. Methylene blue and cesium were employed as model water pollutants. Results show that the un-oxidized carbon gel, despite its lower specific surface area (333 m2/g) displayed a 118 mg/g removal of methylene blue, that is higher than 35 mg/g by the oxidized carbon gel (418 m2/g). The evaluation of adsorption kinetics revealed a lower pseudo-first order rate constant of 0.088 h-1 for 10 mg/L methylene blue adsorption. A positive effect of surface oxidation was demonstrated for cesium adsorption. On molar basis, however, the oxidized carbon gel exhibits a selective removal towards methylene blue compared to cesium. Carbon gel is a promising candidate for water pollutants removal, and further treatment needs to be sought to boost its performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.