Abstract

Line edge roughness (LER) remains a predominant measure of pattern quality used to evaluate processing parameters throughout the many steps of fabricating microelectronics. In the effort to minimize LER, a critical component is a metrology capable of rapid and non-destructive characterization of fluctuations in the position of the pattern, or line, edge. Previously, we have demonstrated a non-destructive metrology capable of sub-nm precision in the measurement of pitch and linewidth termed Critical Dimension Small Angle X-ray Scattering (CD-SAXS). Here, we explore the capability of CD-SAXS to measure line edge fluctuations using the diffuse scattering from diffraction peaks. Models of varying forms of line edge roughness are used to explore the effects of different types of line edge roughness on CD-SAXS results. It is found that the frequency and the degree of correlation of the roughness between patterns greatly influences the scattering pattern predicted. Model predictions are then compared to CD-SAXS results from a photoresist grating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.