Abstract

Hydrochemical investigations in the Kalambaina Formation have been initiated to determine potability and suitability of the shallow groundwater for domestic and agricultural uses. This limestone formation is an extensive aquifer supplying water to livestock and domestic wells in its outcrop areas. The aquifer is recharged by rainfall and discharges mainly into the Sokoto–Rima River system and lakes at Kware, Gwadabawa and Kalmalo in Nigeria. Because recharge to the aquifer is mainly from rainfall, the quality of the groundwater is controlled essentially by chemical processes in the vadose zone and locally by human activities. Water samples were taken at 11 sites comprising boreholes, dug wells and a spring and were chemically analysed for their major ion components. Hydrochemical results show water of fairly good quality. It is, however, hard and generally of moderate dissolved solids content. Concentration of the total dissolved solids is between 130 and 2,340 mg/l. Concentrations of ions vary widely but a high concentration of K+ is found in places. NO3− is on the higher side of the World Health Organization (WHO) permissible limits, indicating pollution in such areas. Groundwater chemistry is predominantly of two facies, namely the calcium–magnesium–bicarbonate and calcium–magnesium–sulphate–chloride facies. These facies probably evolved primarily as a result of dissolution of calcium and magnesium carbonates as well as some human/land-use activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.