Abstract

Robotics can be used to describe wrist kinematics and assess sensorimotor impairments, while the implementation of training algorithms can be aimed at improving neuromuscular control. The purpose of this study was to use a robotic device to develop an adaptive and individualized training program of the distal upper extremity for individuals with multiple sclerosis (MS). This approach included an online assessment of performance aimed at changing the level of assistance/resistance provided during the task. Participants (N = 7) completed a robotic training program that occurred 3 times weekly for 4 weeks. The training protocol consisted of tracking a target moving along a figure by grasping the end-effector of the robotic device and moving it along the trajectory. Outcome measures were assessed pre- and post-intervention. Improvements in performance were quantified by average tracking (p = 0.028) and figural error (p = 0.028), which was significantly reduced by 26% and 43%, respectively. Isometric wrist strength significantly improved post-intervention (flexion: p = 0.043, radial and ulnar deviation: p = 0.028). The results of this work demonstrate that 4-weeks of adaptive robotic training is a feasible rehabilitative program that has the potential to improve distal upper extremity motor accuracy and muscular strength in a MS population.

Highlights

  • Multiple Sclerosis (MS) is a chronic, autoimmune and inflammatory disease affecting the central nervous and musculoskeletal systems

  • Inflammation can accumulate in the brain and spinal cord, eventually resulting in neurodegeneration and demyelination of the efferent/afferent pathways, which in turn, often affects the motor capabilities of the upper limb [3], resulting in upper limb disability in 66% of individuals diagnosed with MS [4]

  • In this work we presented a robotic rehabilitation program that has the potential to improve wrist motor control in individuals with MS

Read more

Summary

Introduction

Multiple Sclerosis (MS) is a chronic, autoimmune and inflammatory disease affecting the central nervous and musculoskeletal systems. MS affects approximately 77,000 individuals in Canada and 2.5 million worldwide [1]. Specific causes of this disease remain unknown but are understood to be genetic or related to environmental factors [2]. It is the most common autoimmune disease affecting the central nervous system and is known as the most disabling chronic disease of young adults during their most productive years [3]. Individuals with MS can become dependent and require complete reliance on caregivers to help complete fine motor skills [5]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call